
STAGED DECOMPRESSION
In 1905 shortly after the publication of the first dive manual, British admiralty adopted decompression procedures to depths of up to 180fsw based on British Professor John Scott Haldane's staged decompression theory. Haldane's staged decompression model had a diver leave bottom at a relatively fast rate followed by decompression stops at shallower depths. This was in sharp contrast to continuous-ascent (liner) decompression procedures developed by French physiologist Paul Bert that was being used at that time. Bert's liner decompression model usually recommended a slow but continuous ascent in the area of 3 feet per minute. The problem with liner decompression vs. staged is the very slow/continuous ascent rate which allows the diver to still on-gas while at the deeper depths. While liner decompression works well for saturation type diving (because you cannot possibly on-gas anymore......you are saturated), it posed serious problems for non-saturation type diving.
ACCEPTANCE BY THE U.S.
The U.S. was slow to adopt Professor Haldane's stage decompression procedure, but had great interest. In 1912, George D. Stillson set up a program to test Haldane's diving tables and methods of stage decompression in the Long Island Sound. Prior to these tests, Navy Divers rarely went deeper than 60 fsw. Throughout a three-year period, first diving in tanks ashore and then in open water from the USS WALKE (DD 34), Navy Divers went progressively deeper, eventually reaching 274 fsw (all on air). Before this the believed safe diving limit was 120 feet but these experiments pushed that limit to around 200 feet. Mixed gas diving would not be discovered for another 27 years but would push this depth limitation well beyond that of air.
ASCENT RATES
Haldane's original staged decompression model recommended ascent rates between 5 and 30 feet per minute dependant upon depth. This was later modified to a rate of 25fpm which remained in effect from 1920-1957. Then in 1958, while revising the U.S. Navy Diving Manual, this rate of ascent came under review. Commander Fane of the U.S. Navy West Coast Underwater Demolition Team wanted rates for his frogmen of 100 feet per minute or faster. The hardhat divers, on the other hand, considered this impractical for the heavily suited divers who were used to coming up a line slowly (usually 10 feet per minute). Thus, a compromise was reached at 60 feet per minute, which was also a convenient 1 foot per second for time/record keeping. This 60 feet per minute rate lasted in the Navy from 1957 until 1993, based on this purely empirical decision, with many recreational diving tables and even early computers following suit. In recent years the ascent rate has been slowed to 30 feet per minute as research has shown this rate helped to better guard against illnesses associated with diving such as decompression sickness and gas embolism...it seems Mr. Haldane had it pretty close to start with.
Haldane's basic staged decompression model formed the basis for what all divers (military and civilian) use world wide for non-saturation type diving. Bert's liner decompression procedure became and remains the basis for saturation type diving decompression.
A few other notable FAQ about John Scott Haldane:
1. He was heavily involved in experiments involving the effects of certain gases on the body. One of these gases; Carbon Monoxide affected not only divers but miners and other workers. He was the first to research the effects of CO on the body by breathing it in himself until it saturated his blood, nearly costing him his life. "At the end I could hardly stand and could not walk alone without falling down" he noted. His research revealed the mechanics behind CO poisoning which became known and "the Haldane effect".
2. During the First World War (1914-18) Haldane was asked to identify the type of gas that the Germans had used in the first gas attack of the war. Haldane found it was chlorine. In order to protect the soldiers, Haldane designed the first gas masks, which proved better than the urine-soaked handkerchiefs that the soldiers had used at first. Haldane also demonstrated the value of oxygen in treating soldiers when they were gassed.
3. He introduced the use of small animals for miners to detect dangerous levels poison gases underground, using either mice or canaries. The reason for this (aside from their portability) was that they have a faster metabolism. This faster metabolism causes them to show symptoms of poisoning before gas levels became critical for workers, giving an early warning sign. The use of canaries was used until 1986 when the method was replaced by the electronic gas detector.
4. Haldane led an expedition to Pikes Peak in 1913 to examine the effects of low atmospheric pressure on respiration. His work here also revealed that decompression sickness was not limited only to divers and miners. He also discovered that the respiratory reflex is triggered by an excess of carbon dioxide in the blood rather than a lack of oxygen.
5. Like his experiments involving Carbon Monoxide, Haldane would routinely experiment with toxic and non-toxic gases on his own body. Despite all the benefits these experiments would yield, years of doing them would eventually take its toll on his lungs. John S. Haldane would die of Pneumonia in 1936 and is still remembered as the father of modern decompression theory.
Note: To learn more about John Scott Haldane and his work check out "Suffer and Survive: The Extreme Life of JS Haldane" by Martin Goodman.
H/Y
February 9, 2001 -- 13:43......about 9 nautical miles off the south coast of Oahu, Hawaii; while conducting an emergency surfacing maneuver, the USS GREENVILLE (SSN-772) collided with the Ehime Maru Japanese fishing vessel. This was part of a demonstration for some civilian visitors, onboard USS GREENVILLE. As the submarine surfaced, it struck Ehime Maru, slicing her hull wide open from starboard to port. Within minutes of the collision, Ehime Maru quickly sank and hit the bottom at 2,000 fsw. A total of 35 people were on board Ehime Maru; 20 crewmembers, 13 students and two teachers. Coast Guard vessels quickly responded and rescued 26 crewmembers. These crewmembers were taken to Oahu for immediate medical treatment, but the remaining nine crewmembers remained missing.
On 16 February 2001, the Supervisor of Salvage and Diving (SUPSALV) and Submarine Development Squadron 5 (SUBDEVRON 5), using the Scorpio remotely piloted underwater vehicle (ROV), located Ehime Maru in 2,000 feet of water. After assessing the technical feasibility and environmental impact of raising Ehime Maru from the ocean bottom, the U.S. government decided to proceed with its recovery. The decision was made not to raise Ehime Maru all the way to the surface but to lift and carry it underwater to a shallow location (115 ft) one mile away from Oahu. Once there, Navy Divers could enter the ship, on 15 October 2001 they did just that. Divers were tasked with five specific mission objectives:
1. Recovery of the 9 mission crewmembers
All in all Navy Divers conducted over 650 dives during the course of 29 days. This operation not only gave closure to families and recovered sensitive items but it also only helped avoid future ecological damage due to the fuel. The use of military assets to complete this also went a very long way in public support and U.S./Japanese relations in that it showed genuine concern vice simply throwing money at the problem.
H/Y

Eleven months before the events of September 11, the USS COLE (DDG-67), was on deployment enroute to Bahrain. In need of fuel, the Arleigh-Burke class destroyer entered the harbor of Aden, Yemen for a scheduled refueling. After the mooring of the ship to a buoy, the refueling operation began. Approximately 45 minutes into the refueling (11:18 a.m.), terrorists detonated a small boat packed with explosives on the port side of the ship. The explosion ripped a 1,600 square foot hole in her hull, killed 17 Sailors and left 39 wounded.
With the recovery phase completed, inspection dives were conducted so that naval engineers could determine how much of the COLE's structural strength had been lost. The Blue Marlin, a 700-foot-long Norwegian heavy-lift transport ship, was contracted to return the COLE back to the United States. To accommodate the COLE, the Blue Marlin was fitted with special docking blocks that would hold her in the most stable position for the long voyage. The fleet ocean tug USNS Catawba towed the COLE out to deeper waters approximately 23 miles off the coast of Yemen on 29 October. Loading the COLE onto the Blue Marlin required calm seas and a water depth of at least 75 feet. The Blue Marlin partially submerged as tugs maneuvered the COLE into position over the transport's deck. Navy Divers then guided the damaged destroyer into position as the Blue Marlin raised up in the water to meet the ship. The entire docking evolution took almost 24 hours to complete. The Blue Marlin, with the COLE securely held on her deck, began the transit back to the United States. 
Abd al-Rahim al-Nashiri is alleged to be the mastermind of the USS COLE bombing and other terrorist attacks, who headed al-Qaeda operations in the Persian Gulf and the Gulf states prior to his capture in November 2002 by the CIA. He is currently in American military custody in the Guantanamo Bay detention camp. In December 2008, he was charged before a Guantanamo Military Commission. The charges were dropped in February 2009 pending the Obama administration's review of all Guantánamo detentions, but may be refiled.
H/Y